Wintersemester 2019/2020

How to "Hypothesen-Test" mit SPSS

Ein Supplement zu den Teilschritten 4 und 5 in Leisens Leitfaden für statistische Auswertung

Bernd Josef Leisen

Wissenschaftlicher Mitarbeiter Management Sozialer Dienstleistungen/Dienstleistungsmanagement

Übersicht Vorgehen bei statistischen Hypothesentests

- Abhängige, unabhängige und Kontrollvariablen in SPSS im Variablenfenster labeln
- Neue Variablen in SPSS erstellen

Wie sieht die zu untersuchende Stichprobe aus?

Univariate Statistiken zu X, Y und den KV

┤ो

Fokus in diesem Foliensatz

2.
Datenaufbereitung

1

3. Datenbeschreibung 4. Zusammenhangsanalyse

5. Signifikanz-Tests

Zusammenhang formulieren: Wie hängen X und Y zusammen? *Oder* Wie unterscheidet sich Y hinsichtlich X?

1. Hypothesen

und

Variablenauswahl

Welche anderen Variablen (=Kontrollvariablen KV) haben einen Einfluss auf den Zusammenhang?

Skalenniveau von Y, X und KV bestimmen

1. Skalenniveau-Kombination von X und Y feststellen

- X nominal und Y nominal
- X nominal und Y metrisch
- X metrisch und Y metrisch

Bivariate Zusammenhangsanalyse (X→Y)

- 4a. Visuelle Inspektion: Ist ein Zusammenhang/Unterschied optisch zu sehen?
- 4b. Zusammenhangsstärke ermitteln: Wie stark ist der Zusammenhang/Unterschied?
- 4c. Signifikanztest: Ist der Zusammenhang/Unterschied statistisch signifikant?
- 4d: Multivariate Zusammenhangsanalyse mit Kontrollvariablen: Bleibt/Wird der Zusammenhang/Unterschied signifikant, wenn wir die relevanten Kontrollvariablen in der Zusammenhangsmessung berücksichtigen?

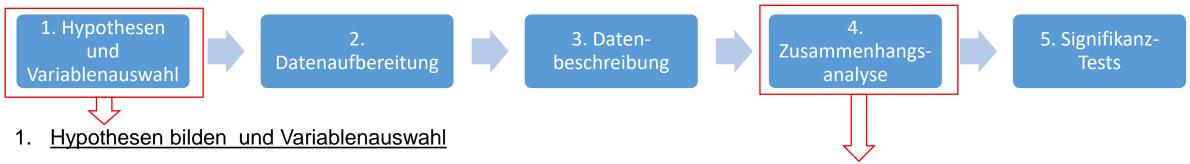
WS 19/20 Bernd Jos

Hypothesen-Tests in SPSS durchführen und interpretieren

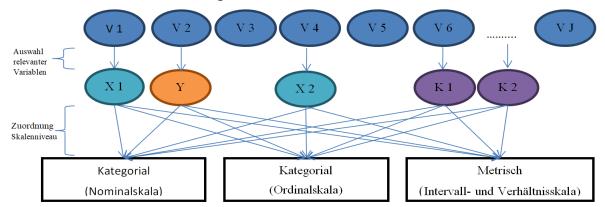
Vor dem Hypothesentest:

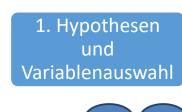
Skalenniveau-Kombination von X und Y feststellen

- X nominal und Y nominal
- X nominal und Y metrisch
- X metrisch und Y metrisch


Ggfls. Fälle selektieren

- · Wenn nicht alle Personen relevant sind
 - z. B. beim Vergleich ausgewählter Personen, die Geld gewinnen können, gegen ihre Gruppenmitglieder
 - Oder: nur 2 Treatmentgruppen sollen miteinander verglichen werden
 - Oder: Nur Frauen sollen ausgewählt werden


Skalenniveau-Kombination von X und Y feststellen



- Auf Basis von Vorwissen Vermutung über den Zusammenhang zwischen zwei oder mehreren Variablen aufstellen (=Hypothese)
- Die hierfür notwendigen Variablen aus Ihrem Datensatz auswählen oder aus vorhandenen Variablen neu erstellen.
- Festlegung **abhängige**r- und **unabhängige**r **Variablen**: Welche Variable Y wird durch welche Variable(n) Xj beeinflusst? (für gerichtete Zusammenhangshypothesen)
- Festlegung von Kontrollvariablen: Welche Variablen könnten noch einen Einfluss auf Y oder Xj haben?
- Bestimmung des Skalenniveaus: nominal, ordinal oder metrisch (Intervall- oder Verhältnisskala)
 - Grund: Auswertungsverfahren unterscheiden sich nach Skalenniveaus der Variablen

Kategorial

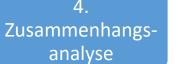
(Nominalskala)

Auswahl relevanter Variablen

Zuordnung _ Skalenniveau

d.

2. Datenaufbereitung


Metrisch

(Intervall- und Verhältnisskala)

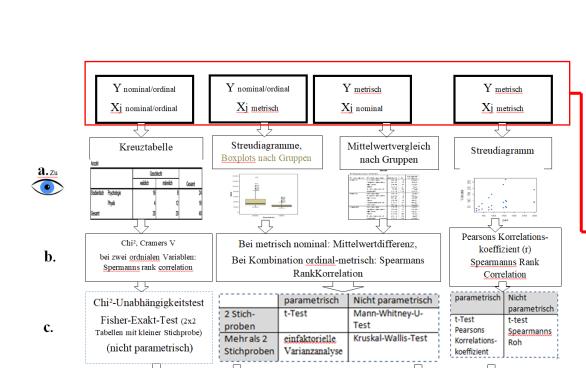
Lineare Regression

3. Datenbeschreibung

5. Signifikanz-Tests

→1. Welches Skalenniveau haben X und Y?

Nominal-skaliert: Daten können in keinerlei natürliche Reihenfolge gebracht werden


Bsp.: Geschlecht, Kontonummer, Treatments

Ordinal-skaliert: können in natürliche Reihenfolge gebracht werden, aber Abstände zwischen den einzelnen Werten sind nicht quantifizierbar

Bsp.: Schulnoten, Präferenzrangfolgen, vollverbalisierte Likertskalen

Metrisches Skalenniveau: natürliche Reihenfolge und quantifizierbare Abstände

Bsp.: Dauer in min, Geldbeträge, Alkoholwert,...

Logistische Regression

Kategorial (Ordinalskala)

2. Welche Skalenniveau-Kombination haben X und Y?

Kritischer Arbeitsschritt: Y und X einem der 4 Kästen zuordnen
Nur wenn die Skalenniveaus müssen richtig bestimmt werden, können
die richtigen Auswertungsverfahren aus der Liste abgelesen werden
Beispiel:

 $X = Treatment (0 = kein Feedback, 1 = Feedback) \rightarrow nominal Y = Veränderung Alkoholwerte (-2,0 bis +2.5) \rightarrow metrisch$

Beispiel - Vorbereitung: nur bestimmte Fälle auswählen

Beispiel Datensatz Follow-Up-Survey

Wir haben 4 Treatmentgruppen → Ausprägungen der Variable "Treatment" im Datensatz

0 = kein Feedback, 1 = Individualfeedback, 2 = Gruppenfeedback, 3 = Gesamtfeedback

Wir wollen aber nur 2 Treatmentgruppen miteinander vergleichen!

Personen, die Feedback zum Alkoholkonsum in allen Gruppen auf der Party (T2) erhalten

→ Variable im Datensatz "Treatment" = 2

Personen, die kein Feedback erhalten haben

→ Variable im Datensatz "Treatment" = 0

Bedingung festlegen:
Ausgewählt werden nur Personenen, bei denen die Variable Treatment =0 oder =2 ist

- In den Synthax einfügen und ausführen
- Alle Personen aus Treatment 1 und 0 werden dann gestrichen

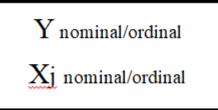
USE ALL.

COMPUTE filter_\$=(Treatment=0 | Treatment=2).

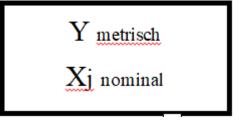
VARIABLE LABELS filter_\$ 'Treatment=0 | Treatment=2 (FILTER)'.

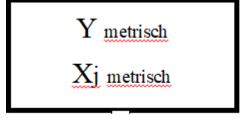
VALUE LABELS filter_\$ 0 'Not Selected' 1 'Selected'.

FORMATS filter_\$ (f1.0).


FILTER BY filter_\$.

EXECUTE.

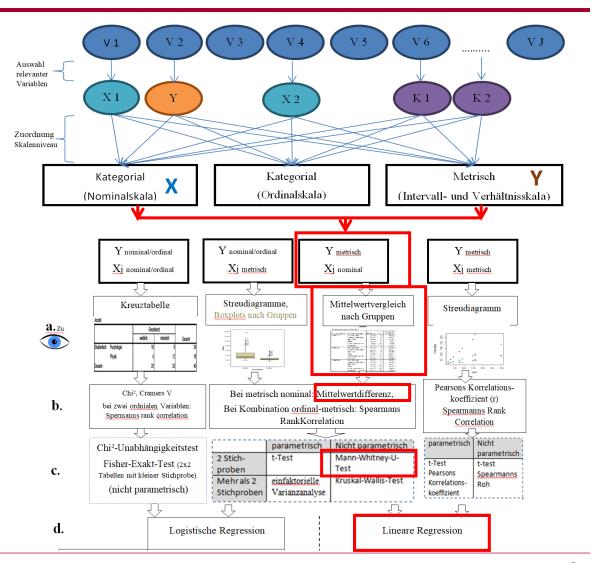

Hypothesen-Tests in SPSS durchführen und interpretieren


Es folgen drei Beispiele für die Durchführung von Hypothesentests in SPSS

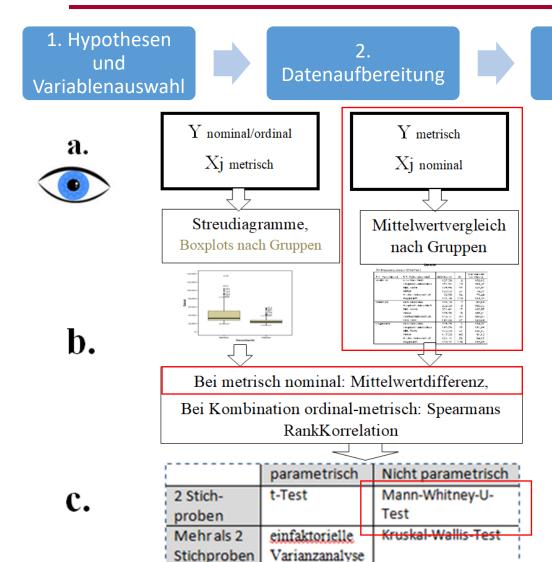
Personen, die Feedback zum Alkoholkonsum in allen Gruppen auf der Party (T2) erhalten, fordern häufiger Informationen zur Alkoholprävention im Follow-Up-Survey an.

Individuen, die ein Live-Gruppen-Feedback(T1 oder T2 oder T3) erhalten, verzeichnen einen signifikant geringeren Anstieg des Atemalkoholwerts von Messung1 zu Messung2 als Individuen, die kein Feedback (T0, treat = 0) erhalten.

Je mehr **Zeit**, Personen **außerhalb ihrer Peergruppe** verbringen, desto geringer ist Ihr **Anstieg des Atemalkoholwerts** von Messung1 zu Messung2 als Individuen, die kein Feedback (T0, treat = 0) erhalten.


Beispiel – Hypothese: X nominal \rightarrow Y metrisch Hypothesen-Tests in SPSS durchführen und interpretieren

H1: Individuen, die ein Live-Gruppen-Feedback(T1 oder T2 oder T3) erhalten, verzeichnen einen signifikant geringeren Anstieg des Atemalkoholwerts von Messung1 zu Messung2 als Individuen, die kein Feedback (T0, treat = 0) erhalten.


Abhängige Variable Y = Anstieg des
Atemalkoholwerts (diffBAC) → metrisches
Skalenniveau

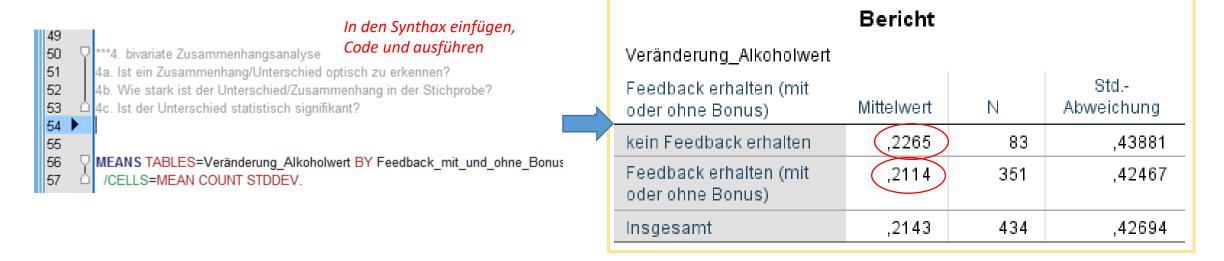
Unabhängige X = Live-Gruppen-Feedback(/Ex-Post-Bonus/Ex-Ante-Bonus) → nominal

Beispiel Hypothesentest: X nominal \rightarrow Y metrisch 4a visuelle Inspektion und 4b Stärke des Zusammenhangs

3. Daten-Zusammenhangsbeschreibung analyse

5. Signifikanz-**Tests**

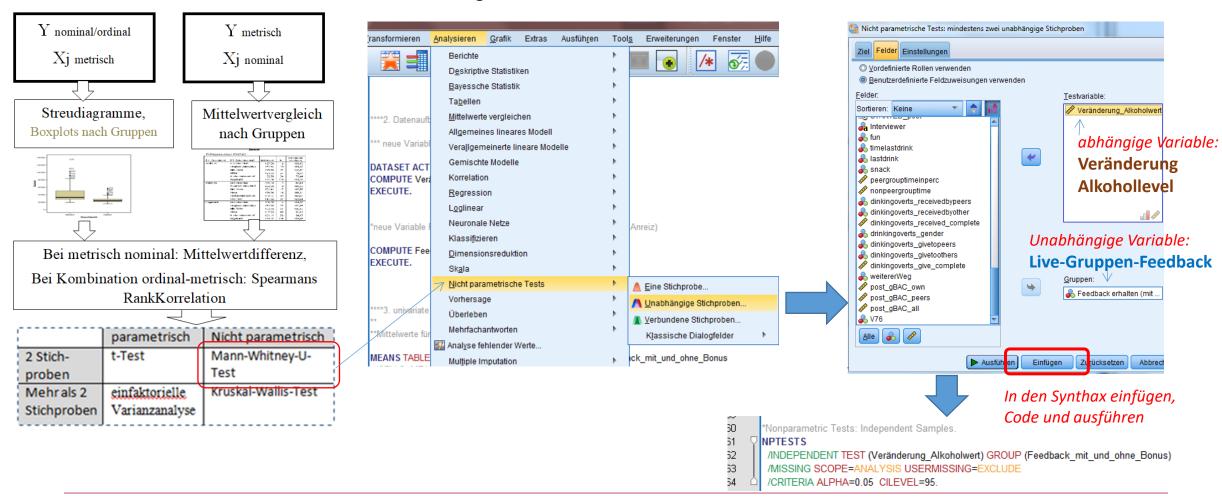
Technische Umsetzung: Mittelwertwertvergleich in SPSS


Abhängige Variablen Optionen.. dinkingoverts_re.. 🔗 Veränderung Alkohol.. dinkingoverts_re.. Stil... drinkingoverts_g... Bootstrap.. dinkingoverts_giv. Schicht 1 von 1 dinkingoverts_giv. Weiter dinkingoverts giv. weitererWeg Schicht 1 von 1 post gBAC own Reedback erhalten (. post gBAC peers post gBAC all ♣ V76 Zurücksetzen OK Abbrechen Hilfe

In den Synthax einfügen, Code und ausführen

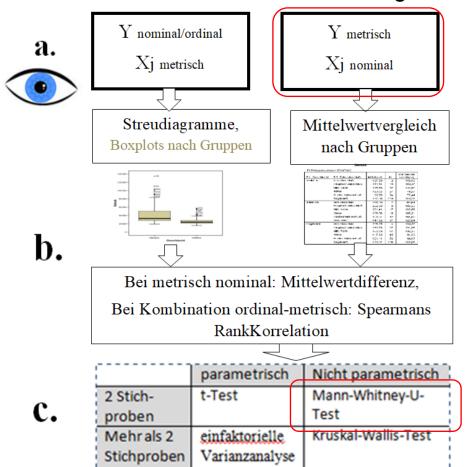
Beispiel Hypothesentest: X nominal → Y metrisch 4a visuelle Inspektion und 4b Stärke des Zusammenhangs

- 4. bivariate Zusammenhangsanalyse
- 4a. Ist ein Zusammenhang/Unterschied optisch zu erkennen?
- 4b. Wie stark ist der Unterschied/Zusammenhang in der Stichprobe?


Durchschnittlicher Alkoholanstieg aller Partygäste 0.214 Promille

Mittelwertdifferenz: Ein kleiner und schwacher Unterschied zwischen Personen mit und ohne Feedback in Höhe von 0.0151 Promille ist zu sehen

Beispiel Hypothesentest: X nominal \rightarrow Y metrisch 4c. Signifikanz des Zusammenhangs: Mann-Whitney-U-Test


4c. Ist der Unterschied statistisch signifikant?

Beispiel Hypothesentest: X nominal \rightarrow Y metrisch 4c. Signifikanztest: Mann-Whitney-U-Test

Interpretation: p-Wert = 0.819

Unter der Annahme der Nullhypothese (=Es gibt keinen Unterschied im Alkohollevelanstieg zwischen Personen mit und ohne Feedback) ist die Wahrscheinlichkeit eine Mittelwertdifferenz von 0,0151 zu finden 81,9%. → Das ist über 10% (p>0.1), d. h. Nullhypothese muss beibehalten werden

Signifikanzniveaus:

p <= 0.1 → statistisch schwach signifikant *

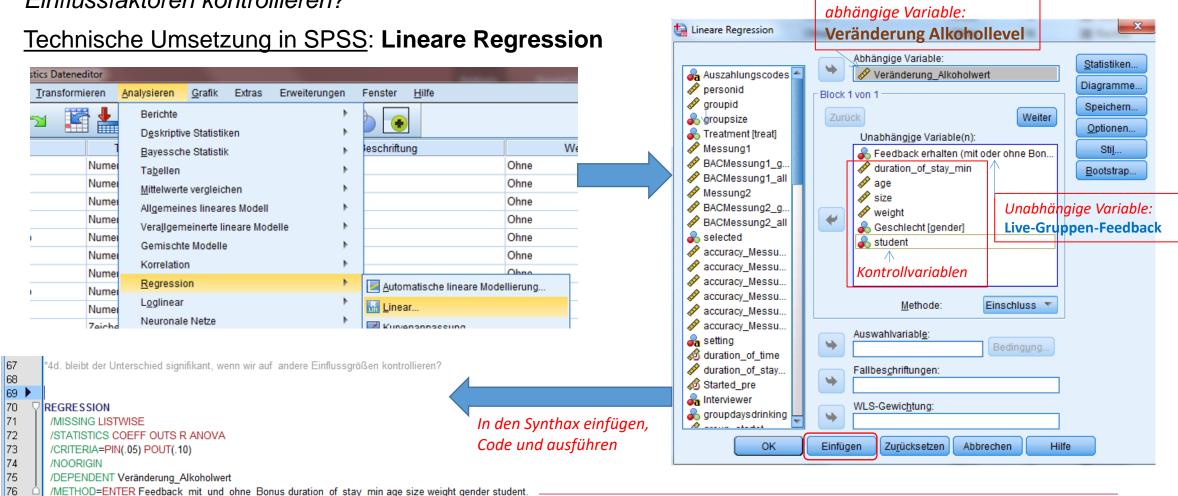
p <= 0.05 → statistisch signifikant **

p <= 0.01 → statistisch stark signifikant ***

Nicht parametrische Tests

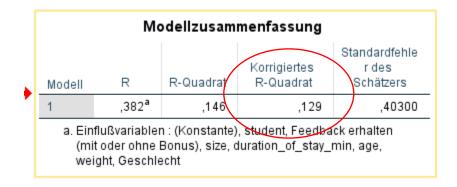
		Hypothesentestübersicht		\
	Nullhypothese	Test	Sig.	Entscheidung
1	Die Verteilung von Veränderung_Alkoholwert ist über die Kategorien von Feedback erhalten (mit oder ohne Bonus) identisch.	Mann-Whitney-U-Test bei unabhängigen Stichproben	,819	dillhypothese beibehalten

Beispiel Hypothesentest: X nominal \rightarrow Y metrisch 4d. Multivariate Analyse in der linearen Regression


/METHOD=ENTER Feedback mit und ohne Bonus duration of stay min age size weight gender student

77

19/20



4d. Bleibt/Wird der Unterschied/Zusammenhang statistisch signifikant, wenn wir auf andere relevante Einflussfaktoren kontrollieren?

Beispiel Hypothesentest: X nominal \rightarrow Y metrisch 4d. *Multivariate Analyse in der linearen Regression*

Modellgüte interpretieren:

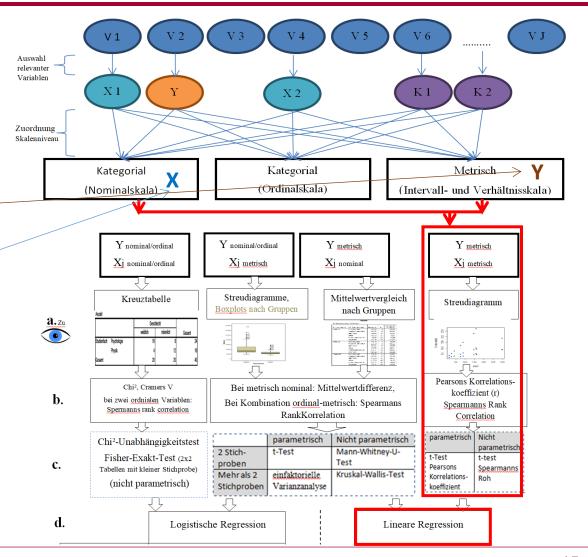
Das Regressionsmodell mit allen unabhängigen Variablen erklärt 12,9% der Streuung der abhängigen Variable "Veränderung des Alkoholwertes"

		Koeffi	zienten ^a			
		Nicht stand Koeffiz		Standardisiert e Koeffizienten		
Modell		Regressions koeffizientB	StdFehler	Beta	Т	Sig.
1	(Konstante)	-1,240	,552		-2,245	,025
	Feedback erhalten (mit oder ohne Bonus)	-,055	,054	-,050	-1,009	,313
	duration_of_stay_min	,002	,000	,316	6,140	,000
	age	-,001	,003	-,015	-,286	,775
	size	,007	,003	,162	2,165	031
	weight	,001	,002	,025	,378	,706
	Geschlecht	,029	,061	,034	,478	,633
	student	-,070	,048	-,081	-1,462	,144

Einflussstärke und Signifikanz des Einfluss von X interpretieren Personen mit Feedback haben im Durchschnitt einen um 0,055 geringeren Anstieg des Alkohollevels, wenn wir auf andere relevante Variablen kontrollieren.

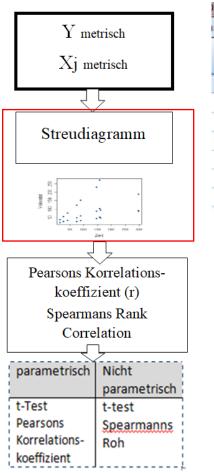
Der Einfluss des Feedbacks ist mit einem p-Wert b von 0.313 nicht signifikant (p>=0.1)

Beispiel – Hypothese: X metrisch \rightarrow Y metrisch Skalenniveau-Kombination von X und Y feststellen

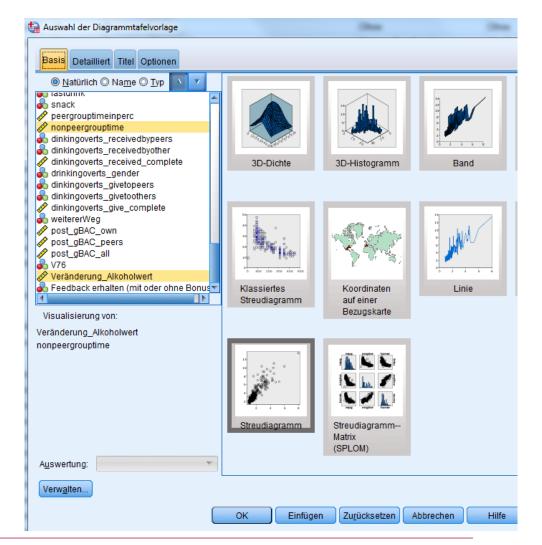


H1: Je mehr Zeit, Personen außerhalb ihrer Peergruppe verbringen, desto geringer ist Ihr Anstieg des Atemalkoholwerts von Messung1 zu Messung2 als Individuen, die kein Feedback (T0, treat = 0) erhalten.

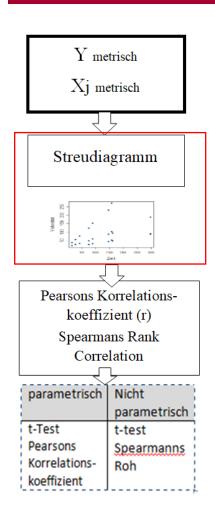
Abhängige Variable Y = Anstieg des _____ Atemalkoholwerts (diffBAC) → metrisches Skalenniveau

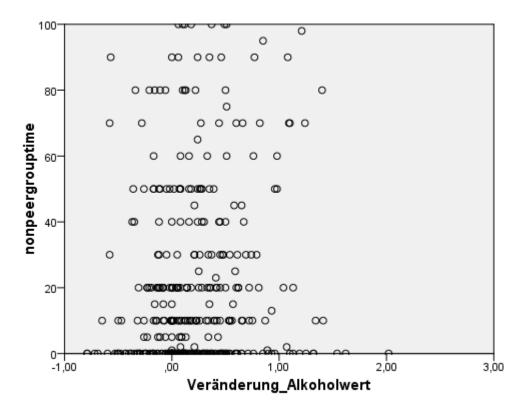

Unabhängige X = %Zeit außerhalb der Peergruppe – metrisches Skalenniveau

Kontrollvariablen K: Aufenthaltsdauer **(duration_of_stay_min)** → metrisch, Alter (age) → metrisch, Geschlecht (gender) → nominal, Gewicht (weight) → metrisch,

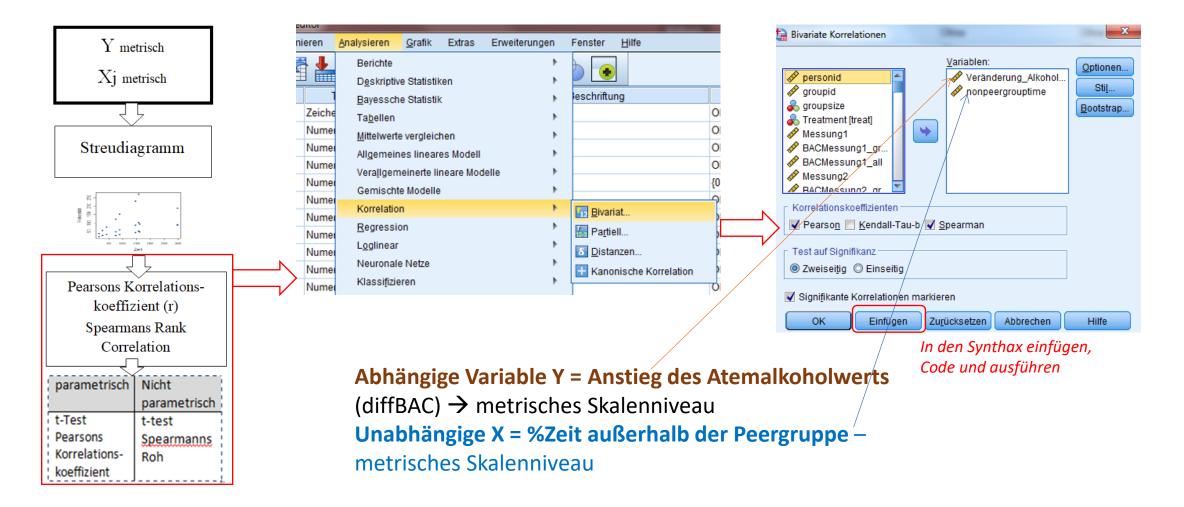


Beispiel – Hypothese: X metrisch → Y metrisch 4a. Optische Inspektion mittels Streudiagramm

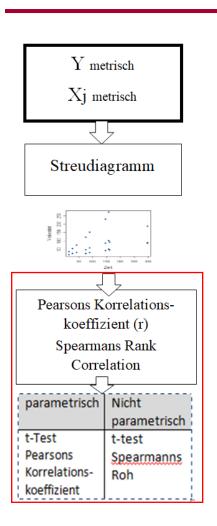




Beispiel – Hypothese: X metrisch → Y metrisch 4a. Optische Inspektion mittels Streudiagramm



→ Ein schwacher Zusammenhang ist zu sehen.


Beispiel – Hypothese: X metrisch → Y metrisch 4b Stärke des Zusammenhangs und 4c Signifikanztest

Beispiel – Hypothese: X metrisch → Y metrisch 4b Zusammenhangsstärke und 4c Signifikanz

Nichtparametrische Korrelationen

Korrelationen

			Veränderung _Alkoholwert	nonpeergrou ptime
Spearman-Rho	Veränderung_Alkoholwert	Korrelationskoeffizient	1,000	(145)*
		Sig. (2-seitig)		,005
		N	434	371
	nonpeergrouptime	Korrelationskoeffizient	,145**	1,000
		Sig. (2-seitig)	,005	
		N	371	385

^{**.} Die Korrelation ist auf dem 0,01 Niveau signifikant (zweiseitig).

4b Wie stark ist der Zusammenhang/Unterschied?

Korrelationskoeffizient **r=0.145** zeigt einen schwach positiven Zusammenhang

4c Ist der Zusammenhang/Unterschied statistisch signifikant?

P-Wert = 0.005 → Der Zusammenhang ist hoch signifikant mit einem p-Wert von 0.005 (p<=0.01)

Interpretation von r nach Cohen (1988)

kleiner Effekt	r = .10
mittlerer Effekt	r = .30
großer Effekt	<i>r</i> = .50

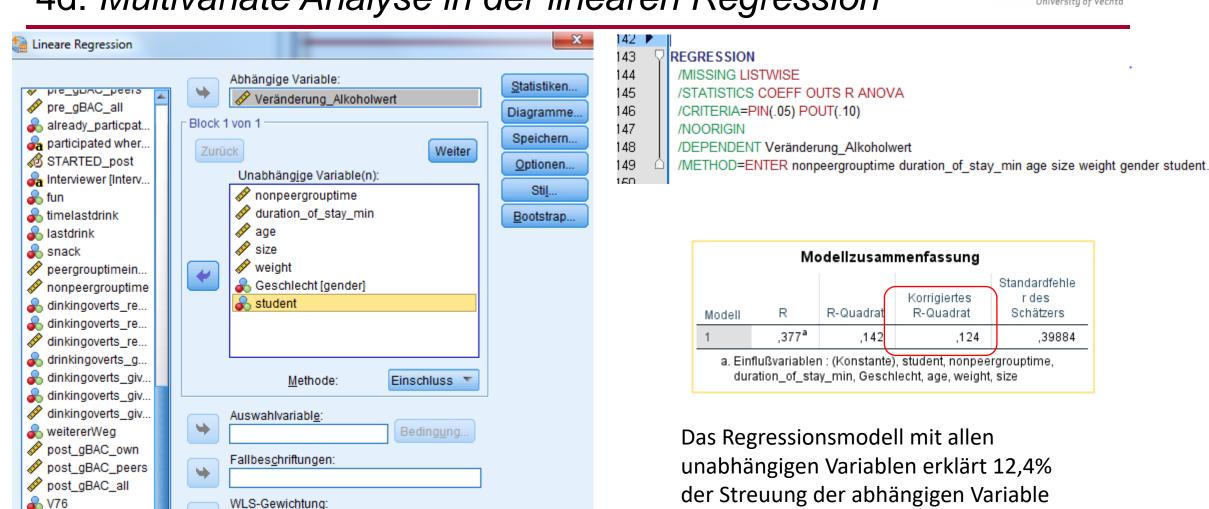
Signifikanzniveaus:

p <= 0.1 → statistisch schwach signifikant *

 $p \le 0.05 \rightarrow \text{statistisch signifikant **}$

p <= 0.01 → statistisch stark signifikant ***

Beispiel – Hypothese: X metrisch – Y metrisch 4d. Multivariate Analyse in der linearen Regression



Standardfehle

rdes

Schätzers

.39884

Hilfe

Feedback erhalte...

OK

Einfügen

Zurücksetzen

Abbrechen

Das Regressionsmodell mit allen unabhängigen Variablen erklärt 12,4% der Streuung der abhängigen Variable "Veränderung des Alkoholwertes"

Beispiel – Hypothese: X metrisch → Y metrisch

4d) Ist der Einfluss der Non-Peer-Group-Time Y auf X die Alkoholveränderung signifikant, wenn wir gleichzeitig auf andere relevante Einflussgrößen kontrollieren?

Koeffizienten^a

		Nicht stand Koeffiz		Standardisiert e Koeffizienten		
Modell		Regressions koeffizientB	StdFehler	Beta	Ţ	Sig.
1	(Konstante)	-,981	,567		-1,731	,084
	nonpeergrouptime	,001	,001	,040	,753	452
	duration_of_stay_min	,002	,000	,322	6,042	,000
	age	-,002	,003	-,034	-,609	,543
	size	,005	,003	,119	1,496	,136
	weight	,001	,002	,051	,740	,460
	Geschlecht	,009	,063	,011	,150	,881
	student	-,051	,049	-,060	-1,047	,296

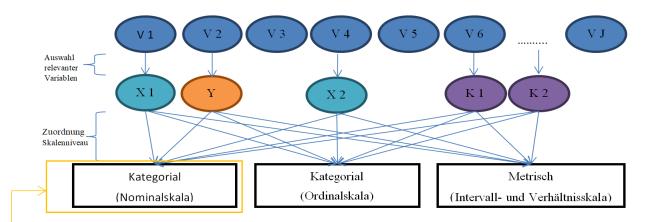
a. Abhängige Variable: Veränderung_Alkoholwert

Interpreation

signifikant (p>=0.1)

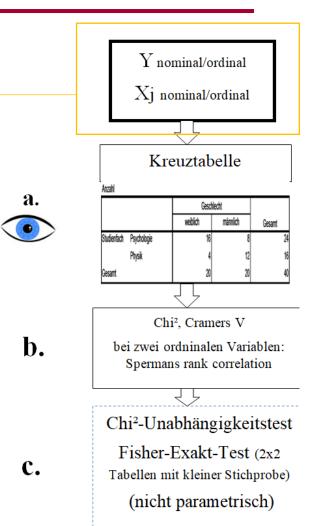
Stärke des Einflusses: b = 0.001

Mit jedem % der Zeit, das eine Person zusätzlich außerhalb seiner Peergruppe verbringt steigt der Alkoholzuwachs um 0.001 Promille, wenn wir auf andere relevante Variablen kontrollieren.


<u>Signifikanz des Einflusses:</u> **p=0.0452**Der Einfluss Non-Peergroup-Time ist somit mit einem p-Wert b von 0.452 nicht statistisch

Beispiel – Hypothese: X nominal → Y nominal

Beispiel Datensatz Teilgruppe3 - Follow-Up-Survey


H1: Personen, die Feedback zum Alkoholkonsum in allen Gruppen auf der Party (T2) erhalten, fordern häufiger Informationen zur Alkoholprävention im Follow-Up-Survey an.

Abhängige Variable Y = Informationen zur Alkoholprävention → nominales Skalenniveau

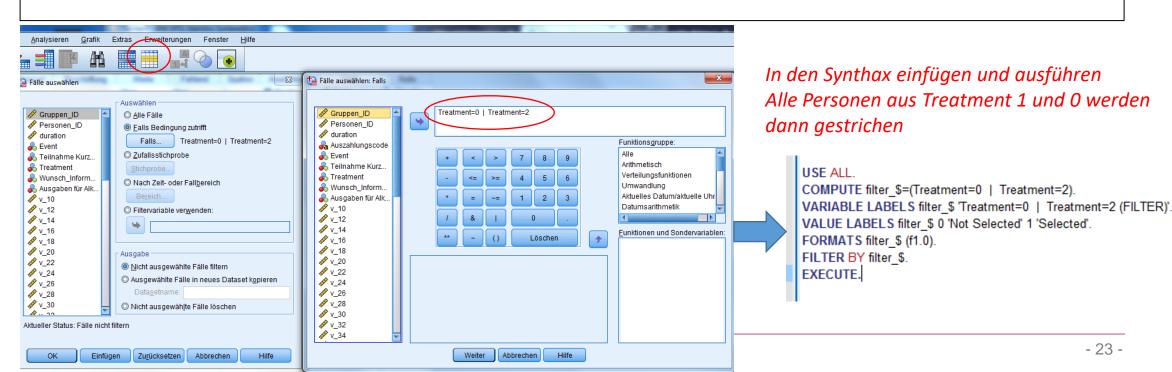
Unabhängige X = Feedback zum Alkoholkonsum in

allen Gruppen auf der Party (T2) → nominales Skalenniveau

Beispiel – Hypothese: X nominal → Y nominal Vorbereitung: Fälle selektieren

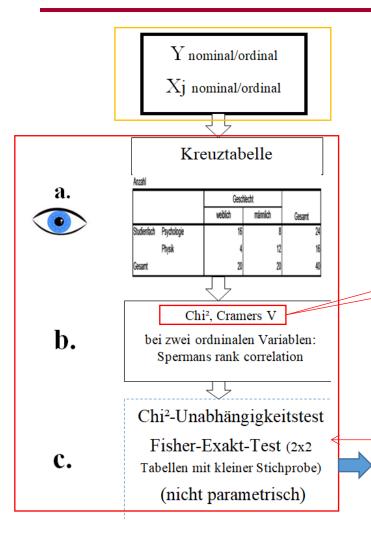
Wir haben 4 Treatmentgruppen → Ausprägungen der Variable "Treatment" im Datensatz

0 = kein Feedback, 1 = Individualfeedback, 2 = Gruppenfeedback, 3 = Gesamtfeedback

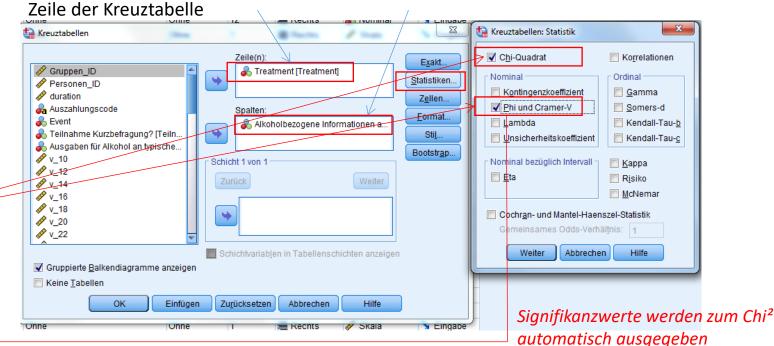

Wir wollen aber nur 2 Treatmentgruppen miteinander vergleichen!

Personen, die Feedback zum Alkoholkonsum in allen Gruppen auf der Party (T2) erhalten

→ Variable im Datensatz "Treatment" = 2

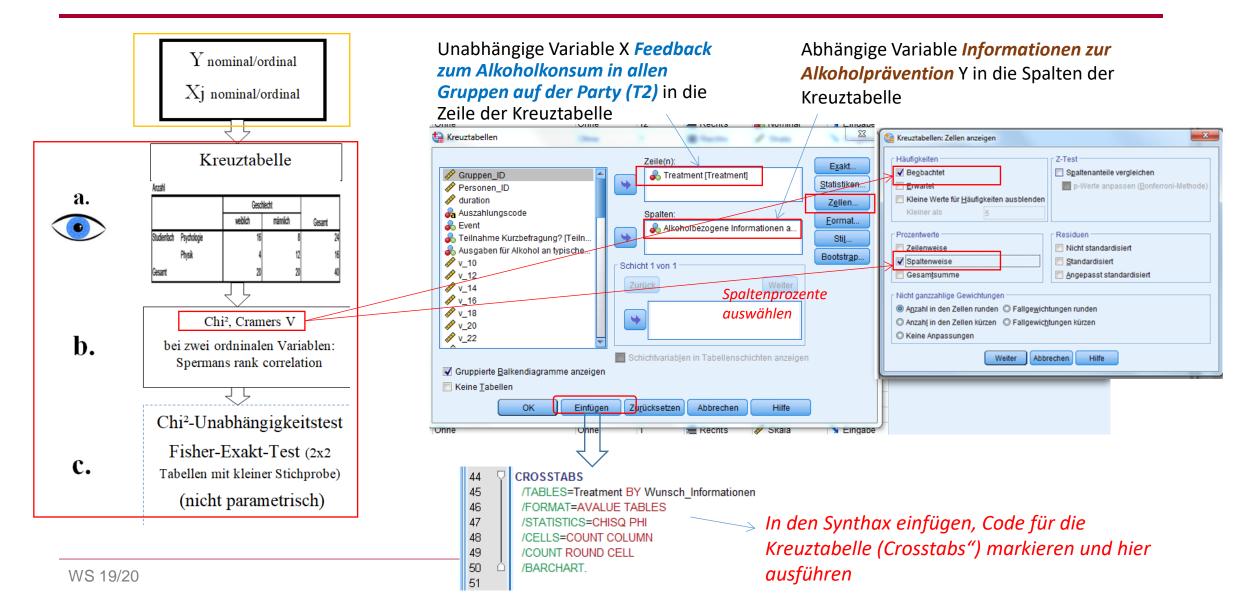

Personen, die kein Feedback erhalten haben

→ Variable im Datensatz "Treatment" = 0


Beispiel – Hypothese: X nominal → Y nominal Kreuztabelle erstellen

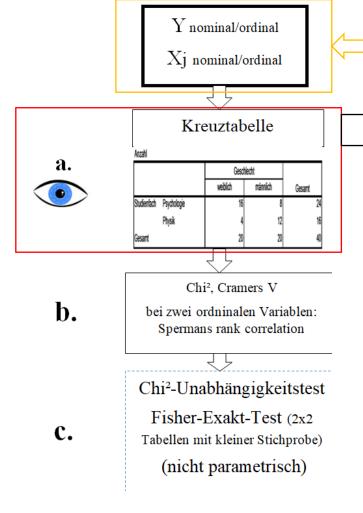
Unabhängige Variable X Feedback zum Alkoholkonsum in allen Gruppen auf der Party (T2) in die

Abhängige Variable *Informationen zur Alkoholprävention* Y in die Spalten der
Kreuztabelle



Technische Umsetzung in SPSS:

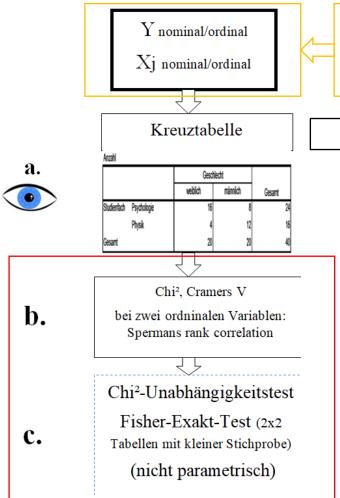
- a) Wählen Sie die Befehlsfolge "Analysieren", "Deskriptive Statistiken"→ "Kreuztabellen…". Es öffnet sich die Dialogbox "Kreuztabellen"
- Wählen Sie aus der Variablenliste die Zeilenvariable aus, und übertragen Sie diese in das Feld "Zeilen", Übertragen Sie die Spaltenvariable in das Feld "Spalten"


Beispiel – Hypothese: X nominal → Y nominal Kreuztabelle erstellen

Beispiel – Hypothese: X nominal → Y nominal 4a) visuelle Inspektion in der Kreuztabelle

H1: Personen, die **Feedback zum Alkoholkonsum in allen Gruppen auf der Party (T2)** erhalten, fordern häufiger **Informationen zur Alkoholprävention** im Follow-Up-Survey an.

Ergebnisse in SPSS interpretieren


4a. Ist ein Unterschied zwischen Personen mit und ohne Feedback zu sehen?

				Feedback erhalten	?
			Kein Feedback	Feedback zum Gruppenkonsum	Gesamt
	Präventionsinfos abgerufen	Anzahl	2	2	4
Infos		% innerhalb Feedback	11,76%	10,53%	11,10%
abgerufen?	Infos nicht abgerufen	Anzahl	15	17	32
		% innerhalb Feedback	88,34%	89,47%	88,90%
		Anzahl			
	Gesamt	% innerhalb Feedback	17 100%	19 100%	36 100%

Von allen Personen, die kein Feedback erhalten haben, haben 2 bzw. 11,76% die Alkoholpräventionsinformationen abgerufen. Bei den Personen mit Feedback zum Gruppenkonsum waren es mit 10,53% leicht weniger. → Ein schwacher Unterschied ist also zu sehen

Beispiel – Hypothese: X nominal → Y nominal 4b) Zusammenhangsstärke und 4c) Signifikanztest

H1: Personen, die **Feedback zum Alkoholkonsum in allen Gruppen auf der Party (T2)** erhalten, fordern häufiger **Informationen zur Alkoholprävention** im Follow-Up-Survey an.

Ergebnisse in SPSS intepretieren

b. Wie stark ist der Zusammenhang?

Symmetrische Maße Wert Näherungsw ei≴e Signifikanz Nominal- bzgl. Nominalmaß Phi -,020 ,906 Nominalmaß Cramer-V ,020 ,906 Anzahl der gültigen Fälle 36

Chi-Quadrat-Tests									
	Wert	df	Asymptotisch e Signifikanz (zweiseitig)	Exakte Signifikanz (2 seitig)	Exakte Signifikanz (1- seitig)				
Chi-Quadrat nach Pearson	,014 ^a	1	,906						
Kontinuitätskorrektur ^b	,000	1	1,000						
Likelihood-Quotient	,014	1	,906						
Exakter Test nach Fisher				1,000	,655				
Zusammenhang linear- mit-linear	,014	1	,907						
Anzahl der gültigen Fälle	36								

a. 2 Zellen (50,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 1,89.

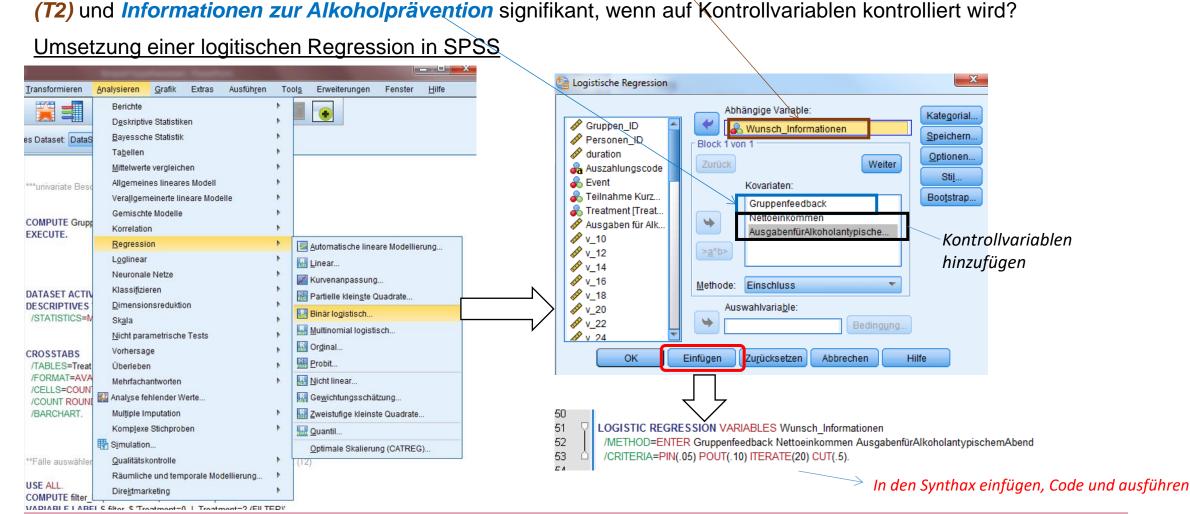
CramersV=0.02: Der Zusammenhang ist sehr schwach mit einem Cramers V Wert nahe 0

Interpretation von Cramér's V	nach Cohen (1988), zitiert nach Ellis (2010)
kleiner Effekt	V = 0.1
mittlerer Effekt	V = 0.3
großer Effekt	V = 0.5

Unter der Annahme der Nullhypothese (kein Zusammenhang zwischen Informationsanforderung und Gruppenfeedback) ist die Wahrscheinlichkeit eine

→ solche Stichprobe mit CramersV-Wert von 0.014 +&Chi²-Wert von 0.14 zufällig zu ziehen 90,6%. → das über 10% (p>0.1) und somit zu hoch, um die Nullhypothese zu verwerfen

P-Wert für den Chi²-Unabhängigkeitstest p > 0.1 → nicht statistisch signifikant → Nullhypothese muss beibehalten werden


p <= 0.1 \rightarrow statistisch schwach signifikant * p <= 0.05 \rightarrow statistisch signifikant ** p <= 0.01 \rightarrow statistisch stark signifikant ***

b. Wird nur für eine 2x2-Tabelle berechnet

Beispiel – Hypothese: X nominal → Y nominal 4d. *Multivariate Analyse in der logistischen Regression*

4d) Bleibt/Wird der Zusammenhang zwischen *Feedback zum Alkoholkonsum in allen Gruppen auf der Party*

Beispiel – Hypothese: X nominal → Y nominal 4d. *Multivariate Analyse in der logistischen Regression*

4d) Bleibt/Wird der Zusammenhang zwischen *Feedback zum Alkoholkonsum in allen Gruppen auf der Party* (T2) und *Informationen zur Alkoholprävention* signifikant, wenn auf Kontrollvariablen kontrolliert wird?

Interpretation einer binär-logitischen Regression in SPSS

Modellzusammenfassung

Schritt	-2 Log- Likelihood	& Snell Quadrat	Nagelkerkes R-Quadrat	
1	20,272ª	,104	,191	

 a. Schätzung beendet bei Iteration Nummer 6, weit die Parameterschätzer sich um weniger als ,001 änderten. Interpretation Pseudo $r^2 \rightarrow$ Werte zwischen 0 und 1

1 = perfekte Anpassung des Modell/hohe Erklärungskraft

0 = gar keine Erklärungskraft des Regressionsmodell für die Vorhersage von

Y → keine Verbesserung zur Vorhersage ohne Variablen

Interpretation: Pseudo-r² von 0.1 und 0.191

- → Das Modell zur Vorhersage von Informationen zur Alkoholprävention mit den drei Variablen hat eine höhere Erklärungskraft als das Null-Modell ohne Variablen
- → Mittelmäßige Erklärungskraft/Anpassungsgüte

	Variablen in der Gleichung								
		Regressions koeffizientB	Standardfehle r	Wald	df	Sig.	Exp(B)		
Schritt 1 a	Gruppenfeedback	,137	1,142	,014	1	,904	1,147		
	Nettoeinkommen	,000	,002	,024	1	,877	1,000		
	Ausgaben für Alkohol an typischem Abend	-,094	,073	1,630	1	,202	,910		
	Konstante	-,333	1,365	,060	1	,807	,717		

 a. In Schritt 1 eingegebene Variablen: Gruppenfeedback, Nettoeinkommen, Ausgaben für Alkohol an typischem Abend. Regressionskoeffizient hat ein positives Vorzeichen → Gruppenfeedback erhöht die Wahrscheinlichkeit, Präventionsinformationen im Survey aufzurufen.

Unter der Annahme der Nullhypothese (=kein Zusammenhang zwischen Feedback du Informationsaufrufung) zufällig eine Verteilung mit Koeffizienten von 0.137 und Standardfehler von 1.142 zu finden beträgt 90,4% → Das ist über 10% und somit ist der Einfluss des Gruppenfeedbacks nicht statistische signifikant.